

Using Monte Carlo in Software Estimation

Mauricio Aguiar ti MÉTRICAS President IFPUG President

Agenda

- Introduction
- A Simple Example
- Another Example
- Do It Yourself

Introduction

Introduction Estimates

 Estimates are quantitative projections of project characteristics such as:

- Product Size
- Effort
- Schedule
- Quality

Introduction Uncertainty and Monte Carlo

- There is a certain degree of uncertainty in the input parameters of an estimation model
- We want to know how that uncertainty may affect results
- That can be accomplished by using the Monte
 Carlo method

Introduction Inputs to an Estimation Model

- Size (Function Points, etc.)
- Project and Product Characteristics
- Estimated Effort for Each Activity

< 7>

A Simple Example

A Simple Example - I

 Execute unit test and construction for 5 modules (classes, functions, subroutines...)

Module	Min (d)	Expected	Max(d)	Programmer	Estimate Quality
А	2	4	10	Arnie	Low
В	4	6	10	Ronnie	Low
С	8	12	16	Andy	Medium
D	3	5	6	Paul	High
E	2	4	6	Norman	Medium
Totals	19	31	48		

Assume work will be done sequentially

A Simple Example – II The Problem

- The 100% probability schedule would be 48 days
- A shorter schedule with 90% probability would be better
- What would that schedule be?

A Simple Example – III Estimate Quality

Distributions: Normal, Triangular, and Uniform

 Simulate the construction and unit test of the 5 modules 1000 times

- Let individual effort vary according to
 - corresponding distribution
- Assess total effort variation

A Simple Example – V Monte Carlo

Module	Min (d)	Expected	Max(d)	Programmer	Simulated	Distribution
A	2	4	10	Arnie	3.31064	Uniform
В	4	6	10	Ronnie	6.95388	Uniform
С	8	12	16	Andy	11.16812	Triangular
D	3	5	6	Paul	5.81785	Normal
E	2	4	6	Norman	3.68017	Triangular
Totals	19	31	48		30.93066	

A Simple Example – VI Histogram of Simulated Schedule

A Simple Example – VII Cumulative Frequency of Simulated Scheduled

A Simple Example – VIII Questions

- Do the distributions used reflect reality?
- Is a shorter schedule as likely to occur as a

longer one?

8

A Simple Example – X Questions

 Simulate construction and unit test 1000 times substituting the lognormal distribution for the normal distribution

A Simple Example – XI Questions

_							
	Module	Min (d)	Expected	Max(d)	Programmer	Simulated	Distribution
	A	2	4	10	Arnie	9.21425	Uniform
	В	4	6	10	Ronnie	5.52832	Uniform
	C	8	12	16	Andy	9.84395	Triangular
	D	3	5	6	Paul	3.47258	Lognormal
	ш	2	4	6	Norman	4.867	Triangular
	Totals	19	31	48		32.9261	

A Simple Example – XII Questions

A Simple Example – XIII Questions

A Simple Example – XIV Using the Lognormal

 Simulate construction and unit test 1000 times using the lognormal distribution in all cases

A Simple Example – XV Using the Lognormal

Module	Min (d)	Expected	Max(d)	Programmer	Simulated	Distribution
А	2	4	10	Arnie	3.95896	Lognormal
В	4	6	10	Ronnie	4.43066	Lognormal
С	8	12	16	Andy	9.87995	Lognormal
D	3	5	6	Paul	4.72436	Lognormal
E	2	4	6	Norman	4.42477	Lognormal
Totals	19	31	48		27.4187	

A Simple Example – XVI Using the Lognormal

A Simple Example – XVII Using the Lognormal

Another Example

Another Example – I Productivity - 9 Projects

Project	Size (FP)	Effort	Productivity
P1	98	1910	19,5
P2	184	2760	15,0
P3	212	2010	9,5
P4	196	1620	8,3
P5	261	1855	7,1
P6	257	1980	7,7
P7	430	7830	18,2
P8	190	1740	9,2
P9	310	4890	15,8
		Average	12,2

Note: Not real data

Another Example – II Estimating Error

((Estimated – Actual)/Actual) * 100

Project	Size (FP)	Effort	Productivity :	Estimate I	Abs % Error
P1	98	1910	19,5	1200	37,2%
P2	184	2760	15,0	2253	18,4%
P3	212	2010	9,5	2596	29,1%
P4	196	1620	8,3	2400	48,1%
P5	261	1855	7,1	3195	72,3%
P6	257	1980	7,7	3147	58,9%
P7	430	7830	18,2	5265	32,8%
P8	190	1740	9,2	2326	33,7%
P9	310	4890	15,8	3795	22,4%
		Average	12,2	MRE	39,2%

Mean Relative Error

Another Example – III Effort Data

- The quality of effort data is often low
- How would error in effort data affect the

estimate?

Another Example – IV Effort Data

Proj	PF	Quality	Min	Exp	Max	Distribution	Effort	Prod	Est	% Abs Err
P1	98	Low	1600	1910	2100	Uniform	2094	21.4	1238	35.2%
P2	184	Low	2500	2760	3000	Uniform	2621	14.2	2325	15.8%
P3	212	High	1950	2010	2100	Normal	2013	9.5	2679	33.3%
P4	196	Medium	1500	1620	1800	Triangular	1671	8.5	2477	52.9%
P5	261	Low	1500	1855	2200	Uniform	2122	8.1	3298	77.8%
P6	257	Low	1500	1980	2400	Uniform	1681	6.5	3247	64.0%
P7	430	Low	5000	7830	9000	Uniform	8872	20.6	5433	30.6%
P8	190	High	1700	1740	1800	Normal	1707	9.0	2401	38.0%
P9	310	Medium	4600	4890	4900	Triangular	4899	15.8	3917	19.9%
							Average	12.6	MRE	40.8%

Another Example – V Effort Data

Another Example – VI Effort Data

Do It Yourself

Do It Yourself - I Simulating the Triangular Distribution

	A	В	С	D	E					
1	Simulating the Triangular Distribution									
2										
3	Iterations	1000	Simulate							
4										
5	Minimum	100								
6	Expected	105								
7	Maximum	110								
8										
9	Uniform	0.93631								
10	Triangular	108.2155								
11										

Do It Yourself - II Simulating the Triangular Distribution

Minimum	100 2054	Aueroge	405 077
	100.2004	Average	105.077
Maximum	109.821	Median	105.063
Range	9.615588		
Freqs	Bins	%	
42	101.4073	4.20%	4.20%
84	102.6093	8.40%	12.60%
149	103.8112	14.90%	27.50%
212	105.0132	21.20%	48.70%
217	106.2151	21.70%	70.40%
159	107.4171	15.90%	86.30%
94	108.619	9.40%	95.70%
43	109.821	4.30%	100.00%
1000		100.00%	
250 200 - 150 - 100 - 50 - 0 -			100
	Freqs 42 84 149 212 217 159 94 43 1000 200 150 150	Freqs Blns 42 101.4073 84 102.6093 149 103.8112 212 105.0132 217 106.2151 159 107.4171 94 108.619 43 109.821	Freqs Bins % 42 101.4073 4.20% 84 102.6093 8.40% 149 103.8112 14.90% 212 105.0132 21.20% 217 106.2151 21.70% 159 107.4171 15.90% 94 108.619 9.40% 43 109.821 4.30%

Do It Yourself - III Simulating the Triangular Distribution

Working with Excel VBA

```
Function TriDist(ByVal prob As Single, ByVal opt As Single, ByVal expect As
'Esta função retorna um valor segundo a distribuição triangular com
'opt = valor mínimo
'expect = valor esperado
'pess = valor máximo
```

```
Dim x, d As Single
d = pess - opt
x = (expect - opt) / d
If prob <= x Then TriDist = opt + (((prob * x) ^ 0.5) * d)
If prob > x Then TriDist = pess - ((((1 - prob) * (1 - x)) ^ 0.5) * d)
```

End Function

Do It Yourself - IV Simulating the Triangular Distribution

Sub Simular()

```
Dim intI, intNumIteracoes As Integer
intNumIteracoes = Sheets ("Main").Range ("B3").Value
If intNumIteracoes <= 0 Then</pre>
    MsgBox ("Número de iterações deve ser > 0")
   Exit Sub
End If
If intNumIteracoes > 10000 Then
   MsgBox ("Número máximo de iterações = 10000")
   Exit Sub
End If
'Resultados: Usar Colunas A, B, C, D, E
Sheets("Dados").Select
Sheets("Dados").Range("A27").Select
ActiveWindow.FreezePanes = True
Sheets ("Dados").Range ("A1").Select
Sheets("Dados").Range("A1:E10000").Clear
For intI = 1 To intNumIteracces
    Application.StatusBar = "Processando Iteração... " & intI
    'Distr Triangular
    Sheets("Main").Range("B10").Copy
    Sheets("Dados").Cells(intI, 1).PasteSpecial Paste:=xlValues,
                                    Operation:=xlNone,
                                    SkipBlanks:=False,
                                    Transpose:=False
Next intI
ActiveWindow.FreezePanes = False
Application.StatusBar = False
```

End Sub

Summary

Summary Monte Carlo

- Monte Carlo helps to identify variation in the results as a function of the uncertainty in the inputs
- The choice of the correct statistical distribution is very important
- A lot can be done using Excel & VBA
- There are professional Monte Carlo tools (Crystal Ball, @Risk, XLSim, etc.)

Savage, Sam L., Decision Making with Insight - XLSim 2.0

Decision Making with Insight (with Insight.xla 2.0 and CD-ROM) (Paperback) by Sam L. Savage (Author)

****** (3 customer reviews)

List Price: \$73.95

Price: \$60.42 & this item ships for FREE with Super Saver Shipping. Details You Save: \$13.53 (18%)

Thank You

Mauricio Aguiar

ti MÉTRICAS mauricio@metricas.com.br www.metricas.com.br

