

A Empresa Líder em Métricas e Análise de Pontos de Função

Applying Function Point Analysis
to Requirements Completeness

Carol Dekkers
Quality Plus Technologies Inc.

Mauricio Aguiar
Caixa Economica Federal

Requirements issues abound in system development despite many models and methods
intended to verify that requirements are complete. This article highlights how function
point analysis (FPA), the software sizing technique, delivers value as a structured
requirements review. While its historical usage has been confined almost exclusively to
quantifying software size, FPA is gaining popularity as a useful, structured method for
reviewing requirements. When used during software development to verify
requirements completeness, FPA delivers more than mere numbers for software size—
the FPA documentation reflects the full, known set of functional user requirements.

 There is a wide diversity of traditional approaches for identifying and gathering software
requirements, including joint application design sessions, requirements management techniques,
prototyping, rapid application development, eXtreme Programming, and others. When done
properly these techniques typically deliver a form of documented user requirements. After a series
of user and peer reviews, these formal requirements are typically assumed to represent the complete
set of user requirements.
 However, the full set of user requirements is generally not complete until the project’s end and
continues to emerge as it progresses. As a result the project encounters rework, schedule slippage,
and budget overruns, the extent of which depends on the degree of originally unknown
requirements. With some Department of Defense projects this problem is further compounded due
to requirements that are outcome- or performance-based, and functional requirements are developed
as part of the design process. When these projects emerge, they challenge traditional requirements
approaches. For example, how are software requirements documented when the performance
requirement is to launch a projectile from a range of 200 miles with an impact of X? This article is
not intended to solve these types of requirement issues.
 This article addresses projects where user requirements are articulated (or should be) and outlines
how function point analysis (FPA) can be an additional tool to identify missing requirements, gauge
requirements completeness, and uncover potential defects. Our experience shows that FPA is often
more effective than peer or user walkthroughs in identifying the full set of functional user
requirements and uncovering potential defects. In fact, benefits gained by applying FPA to
functional user requirements can be more valuable than the mere function point size of the software.

 There are two audiences for this article:

1. Development teams that already use or are considering using FPA on their projects. The
information provided here is intended to increase the cost-effectiveness of FPA, and leverage
its use as a requirements completeness check.

2. Development teams that do not use FPA, but would like additional tools to increase

Page 1 of 8

requirements effectiveness. The concepts outlined in this article can be applied to any project
without the need to complete all steps in the method.

Requirements
Why is it that the right, i.e. correctly and accurately stated, set of software requirements is so elusive
in our industry? Among various reasons, problems involve getting the requirements right, getting
the right requirements (the complete set of functional user requirements), and often involve getting
more than the specifications of requirements. One of the biggest problems software developers
encounter is being able to judge whether requirements are sufficiently complete before beginning
formal design and coding.
 Before we discuss how to apply FPA to requirements completeness, it is worthwhile to identify
the three major types of software requirements. Together, these form the overall project’s user
requirements. First are functional user requirements, which are the logical business or user functions
the software must perform. All software from real-time missile guidance systems to business
accounting software has functional requirements that must be performed. These include elementary
processes that must be supported to input, process, manipulate, output, and interface data to, from,
and within the software. FPA specifically addresses this type of user requirements.
 Second are nonfunctional user requirements. These are the technology-independent user/business
constraints that the software must meet. Nonfunctional requirements include quality and
performance requirements such as portability, usability, security, dependability, reliability, and
speed. Part of the FPA technique can assist with these types of requirements.
 Lastly, technical requirements are the user requirements for a specific hardware/software
configuration or a particular technical configuration that must be delivered. For example, the
technical requirements may specify an Oracle database or a multitiered hardware solution. While
these software specifications are as important as the other two types, FPA does not address this type
of requirements.
 The remainder of this article specifically pertains to functional and nonfunctional requirements.

Traditional Completeness Checks
While both the functional and nonfunctional requirements strive to be unambiguous, correct, and
complete, it is easy to write down and check business rules for ambiguity and correctness with a
user. The problem, however, is to ensure that the full set of functional user requirements has been
identified. One or two frames of reference are needed. Such a frame of reference is typically
provided using two existing techniques:
1. Theory-Based Model. A theory-based frame of reference may be used as structured analysis,
information engineering, or data modeling. The analyst will decompose the problem and look for
abstract structures like data flows, processes, and data stores. Requirements will be considered
complete when the abstract structures make sense to the analyst, e.g., data stores have both
incoming and outgoing data flows.
2. Personal Experience. The analyst may have worked with other business systems similar to the
one being analyzed. In that case, he will possess a subjective frame of reference composed of all the
business structures and rules he has previously encountered. The analyst will decompose the
problem and look for known structures and rules conformant to his own model of reality.
Requirements will be considered complete when the identified structures match the analyst’s model
of completeness, which is subjective, e.g., accounts receivable will have been either received or
marked as delinquent.
 Ordinarily, the analyst will work with a mixture of the first two frames of reference to increase
quality and clarity of the documented set of known software requirements and to increase the
relative percentage of the known to total requirements. Throughout the project he will integrate his
personal experiences with the theoretical knowledge. Increasingly, however, this is insufficient to
gain enough completeness coverage. It is in the analyst’s interest to use as many frames of reference
as possible.
 Ideally, frames of reference should be orthogonal, i.e., they should not overlap. Each frame of
reference should provide unique information not available in the other models.

Page 2 of 8

Why Function Point Analysis?
Along with some of the nonfunctional requirements, FPA provides an additional frame of reference
for checking the completeness of functional requirements. FPA is different from the first two frames
of reference because it provides a unique, user-focused perspective. FPA examines the set of
functional user requirements in terms of data and movement/manipulation (transactions) as
understood and expressed by users; on this basis, it determines software’s functional size. As such,
FPA can be used in addition to the theory-based and personal experience models previously
mentioned to ensure that functional user requirements are complete.

Function Point Basics
Function points (FPs) measure the size of a software project’s logical user functionality as opposed
to the physical implementation of those functions as measured by lines of code (LOC). FPA
examines the functional user requirements to be supported or delivered by the software. It then
assigns a weighted number of FPs to each logical user function as outlined in Function Point
Counting Practices Manual [2] and calculates the software’s FP size.
 In simplest terms, FPs measure what the software must do from an external, user perspective
irrespective of how the software is constructed. While analogies from other industries such as
building construction and manufacturing attempt to describe how function point analysis works with
software, none provides a perfect fit. In basic terms, FPs reflect the functional size of software,
independent of the development language and physical implementation.
 FPs can be likened to the functional area of a building by summing up its floor plan size. FPs
quantify the functional user requirements (the floor plan) by summing up the size of its functional
components. As with building construction, project management is not possible if only square foot
size is known. System development cannot be managed purely on the basis of FP size.1

Using FPA to Gauge Completeness
For an introductory article on FPs, see the February 1999 issue of CROSSTALK. When performing a
FP count, all the known functional user requirements for the software are analyzed, weighted, and
counted using the standard identification method. It is during analysis of functional user
requirements that most errors and omissions in the requirements are uncovered, as described below.
Following are the steps in the actual FP counting process:
1. Determine the project scope and purpose of the function point count. For example, FPs can
be counted to quantify the size of a new development or enhancement/renovation project, or to size
an existing base application.
 In this step it is useful to document the specific name and date of the source document(s) used as
a basis for the count (e.g., system ABC requirements document V1, March 22, 2000). This provides
traceability of logical functions included within the functional requirements as a specific point in
time, and is useful for gauging scope creep during the project. It can also contribute to the historical
base for gauging future projects as outlined below.
 By documenting—even in a few lines of text—the project scope and purpose of the FP count,
project assumptions are clarified and requirements oversights identified. For example, if the purpose
of the FP count is to size the amount of customization required for a commercial off-the-shelf
package, the scope will include only the customized functions, not the entire package. This provides
a delineation of what is included in the project.
2. Identify the application’s logical boundary. This step identifies the functions that the software
must perform, together with external users interfaces, departments, and other applications. The
application boundary for FP counting is not the same as a physical one. Instead it is the logical
boundary that envelops self-contained user functions that must exist to deliver the user
requirements. This boundary separates the software from the user domain (users can be people,
things, other software applications, departments, and other organizations). Software may span
several physical platforms and include batch and on-line processes—all of which are included
within the logical application boundary. For example, an accounts payable system would typically
be considered one application in FPA, even though it may reside across multiple hardware platforms
in its physical installation.

Page 3 of 8t

 Because each application or software system has a separate application boundary (e.g., accounts
payable would typically be one application, fixed assets may be another) a project context diagram
consisting of several circles denoting various application boundaries is often drawn as a part of the
functional sizing process. In cases where an enhancement project renovates an application that has
little documentation, this step provides a context diagram that can be used later for communicating
with the users about the software system. In a particular client situation, this visual depiction of
various application boundaries and interfaced applications opens a discussion of client/server
migration of certain applications because our diagrams showed which applications would be
affected by the migration of a central application. Because these context diagrams are visual in
nature and independent of technology, their review often leads to the discovery of interfaces that
were previously discussed, but that are missing from the written requirements.
 In addition, this step with subsequent steps, clearly demarcates logical boundaries between user
applications. By clarifying which functions lie within which applications, there is less likelihood of
a set of requirements being overlooked. For example, if a project team assumes that another
application will maintain a set of common data, a review of the context diagram showing the
interface to the other application may reveal potential oversights.
3. Count the Data Functions. This step considers internal and external data entities. It consists of:

� Identify, weigh, and count the internal logical files (ILFs). These are the persistent logical
entities or data groups to be maintained through a standard function of the software.

� Identify, weigh, and count the external interface files (EIFs) that are persistent, logical entities
referenced from other applications but not maintained. Typically these data are used in
editing, validation, or reporting types of software processes.

 When identifying and classifying the persistent logical entities as internal (maintained) and
external (referenced-only), it is helpful to draw circles around the entities and their included
subentities on a data model or entity-relationship diagram. If there is no data model or entity-
relationship model, one is essentially created in this step by building on the context diagram created
in the previous application boundary step.
 Note that FPA does not count hard-coded data or any tables/files created only because of the
physical or technical implementation. The data step records the number and types of logical data
elements if they are known, and if they are not already identified in the requirements. This provides
a checklist of data entities to gauge the consistency and completeness of transactional (manipulation
of data) functions.
 By reviewing the entities, whether on a data model or hand-drawn context diagram, and whether
they are inside the application boundary (i.e., to be maintained by the software) or external (i.e., to
be referenced only) often clarifies comments. Such comments might include: “Why is that entity
external? I thought we needed to be able to update that entity.” These would lead to a discussion that
either confirms the original requirements or reveals an inconsistency in understanding and a change
in the diagram. When the review is combined with the transactions outlined in the next step, the
majority of (potential) requirements mismatches are identified.
4. Count the transactional functions. Use the following:

� External Inputs (EIs) that are the elementary processes whose primary intent is to maintain the
data in one or more persistent logical entities or to control the behavior of the system. Note
that these EIs are functional unit processes and not physical data flows or data structures.

� External Outputs that are the elementary processes whose primary intent is to deliver data out
of the application boundary, and which include at least one of the following: mathematical
calculation(s), derive new data elements, update an ILF, or direct the behavior of the system.

� External Queries that are the elementary processes whose primary intent is to deliver data out
of the application boundary purely by retrieval from one or more of the ILFs or EIFs.

 This step is where the majority of missed, incomplete, or inconsistent requirements are identified.
This list provides some examples of the types of discoveries that can be made using FPA:

Page 4 of 8

� If a persistent, logical entity has been identified as an ILF, i.e., maintained through a standard
maintenance function of the application, but there are no associated EIs processes, there are
one or more mismatched requirements:
– Either the entity is actually a reference-only entity (in which case it would be an EIF), or
– There is at least one missing requirement to maintain the entity, such as add entity, change
entity, or delete entity.

� If there are data maintenance (or data administration) functions identified for data, but there is
no persistent logical entity to house the data (ILF), the data model may be incomplete. This
would indicate the need to revisit the data requirements of the application.

� If there is a data update function present for an entity identified as reference only (EIF), this
would indicate that the entity is actually an ILF. The data requirements are inconsistent and
need to be reviewed.

� If there are data entities that need to be referenced by one or more input, output, or query
functions, and there is no such data source identified on the data model/entity-relationship
diagram/context diagram, the data requirements are incomplete and need to be revisited.

� If there are output or query functions that specify data fields to be output or displayed that
have no data source (i.e., no ILF or EIF), and the data is not hard-coded, there is a mismatch
between the data model and the user functions. This indicates a need to revisit the data
requirements.

 Most maintained entities (ILFs) follow the Add, Update, Delete, Inquiry, Output (AUDIO)
convention rule [3]; each persistent logical entity typically has a standard set of functions associated
with it. Not all entities will follow this pattern, but AUDIO is a good checklist to use with the ILFs.
5. Evaluate the complexity of nonfunctional user constraints using a value adjustment factor.
Through an evaluation of the 14 general systems characteristics (GSCs) of FPA (e.g., the GSCs
include performance, end-user efficiency, transaction volumes, and others), a software complexity
assessment can be made. The impact of user constraints in these areas is often not enunciated or
even addressed until late in the software development life cycle, even though their influence can be
major on the overall project.
 Examining the user requirements with these nonfunctional, user business constraints in mind can
provide the following types of valuable information:

� The nonfunctional requirement due to transaction rate peak loads may necessitate 24-hour, 7-
day-a-week availability. This will have a critical impact on the resulting project.

� Special protection against data loss may be of critical importance to the users’ business and
must be specially designed into the system. This must be identified up front to avoid any
unforeseen impact.

 FPA provides an objective project size input for use in software estimation equations (together
with other factors), or to normalize measurement ratios. The process checks whether the full set of
functional user requirements has been identified and can uncover defective and missing
requirements. Table 1 summarizes how to use FPA to uncover requirements defects. The far-right
column of Table 1 illustrates where and what type of potential requirement problem there might be.

Page 5 of 8

Benefits After the Requirements Phase
Having a documented set of functional user requirements (and the nonfunctional requirements that
FPA addresses) such as that provided by the FPA process goes far beyond merely the requirements
phase. Hill and Tinker Air Force Bases’ Materiel Systems Groups (MSGs) found this to be the case.
An example from Hill serves to illustrate this point: The MSG would attach a full listing of
functional requirements (using the FPA-documented breakdown of FP components counted) to the
software project estimate sent in to headquarters. Later, when questions arose about a particular set
of functionality and whether it had been included, the group would refer to the FP listing to see if
the particular functionality was listed. If it was not, it was clear that the functionality had not been
included. A decision was then made about whether or not to include it and increase the estimate.
 This simple set of documented functions minimized the finger pointing and blaming of “who said
what and when,” and reduced the discussion to whether or not the functions were included in the
specifications submitted. Additionally, when scope changes emerged later in the project, as they

Page 6 of 8

inevitably do, both groups were in a position to adjust their FPA sizing and quickly assess the
impact of scope change on the project.
 While other requirements review and tracking techniques can also provide value, FPA is a simple
method that delivers both a functional size of the software (useful for estimating) and can assist with
the requirements processes.

Summary
Today’s software analyst needs all the assistance he or she can find to help in the quest for complete
(and known) user requirements. The framework provided by the structure of the FPA technique
gives the analyst one extra frame of reference to gauge the completeness of the known user
requirements. Requirements defects will still occur no matter how many frames of reference are
used, however, the use of FPA to augment the traditional theory-based and personal experience
frames of reference will increase the analyst’s ability to ensure that software requirements are
complete.
 Is FPA worthy of your organization’s consideration? The answer will vary depending on your
organizational structure, goals, and measurement objectives. FPA is one tool that can assist with
your requirements processes and also provide a quantitative value to size your software. For those of
you who have been using FPA only to arrive at a software size, you can gain valuable benefits by
applying FPA as a structured review, especially when your requirements are deemed complete.

References

1. Quality requirements can be found in the ISO/IEC 9126:2000 suite of standards that address
many of the ility constraints such as portability, security, usability, reliability, etc. Contact
ISO for further details.

2. The Function Point Counting Practices Manual (CPM) is maintained by the International
Function Point Users Group (IFPUG) and is currently in Release 4.1 (1999).

3. Per personal discussions with John VanOrden, certified function point specialist, formerly of
Gartner Group and a member of the Quality Plus Technologies Inc. consulting team.
VanOrden uses the AUDIO checklist.

Note

1. When matters of software estimating are discussed, many more factors are involved beyond
the functional size of software, including the type of software, technical requirements, number
of users, geographic locations, etc.

About the Authors
Carol Dekkers is vice-chair of the Project Management Institute Metrics
Special Interest Group. She is president of Quality Plus Technologies
Inc., a management consulting firm specializing in helping DoD and
private organizations succeed with function points, make wise
investments in software measurement, and achieve bottom-line
improvements through process improvement. Dekkers is a past president
of the International Function Point Users Group and an International
Organization for Standardization project editor on the Functional Size
Measurement project. She was named one of the 21 New Faces of
Quality for the 21st century by the American Society for Quality. She is a
professional engineer, certified function point specialist, and a certified
management consultant.

E-mail: Dekkers@qualityplustech.com

Page 7 of 8

Mauricio Aguiar is a software manager with Caixa Economica Federal,
a leading Brazilian government bank with more than 2,000 branches. He
has 25 years’ experience in software management, including the
application of accelerated learning in information technology. Aguiar is
president of the Brazilian Function Point Users Group and serves on the
International Function Point Users Group (IFPUG) board of directors. A
professional engineer and systems analyst with a master’s degree in
neuro-linguistic programming, he is a member of Project Management
Institute, American Society for Quality, and the IFPUG.

E-mail: mauricioaguiar@yahoo.com

Page 8 of 8

